A Novel Selenium-Containing Heterocycle. Lewis Acid-Assisted Reaction of Selenoamides with Aldehydes Leading to 6*H*-1,3,5-Oxaselenazines

Masahito SEKIGUCHI, Akiya OGAWA,* Shin-Ichi FUJIWARA, Ilhyong RYU,
Nobuaki KAMBE, and Noboru SONODA*

Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Suita, Osaka 565

New selenium-containing heterocyclic compounds, 6H-1,3,5-oxaselenazines, have been synthesized stereoselectively by the reaction of selenoamides with aldehydes in the presence of boron trifluoride etherate complex.

Selenoamides hold great promise as useful precursors for synthesis of selenium-nitrogen heterocyclic compounds, 1,2) since they have a highly reactive carbon-selenium double bond as well as an intrinsical Se-C-N unit. Nonetheless, practical use of selenoamides for the synthesis of heterocycles has been limited to some examples³⁾ owing to the difficulty in preparing selenoamides.⁴⁾ Recently, we have developed a convenient method for synthesis of selenoamides by the reaction of nitriles with selenium, carbon monoxide, and water.⁵⁾ Herein we report the Lewis acid-assisted condensation of selenoamides with aliphatic aldehydes, leading to novel heterocyclic compounds containing a Se-C-N unit in the ring with high stereoselectivity.⁶⁾

Boron trifluoride etherate complex (10 mmol) was added dropwise over 2-min period to a magnetically stirred mixture of selenobenzamide (5 mmol) and acetaldehyde (12 mmol) in chloroform (20 mL) at 0 °C. The resultant solution was warmed to 20 °C and stirring was continued for 1 h. The reaction mixture was poured

Se || ArCNH₂ + 2 RCHO
$$\frac{BF_3 \cdot OEt_2}{CHCl_3, 20 \, ^{\circ}C}$$
 Ar $\stackrel{3}{\leftarrow}$ $\stackrel{R}{\leftarrow}$ $\stackrel{Se}{\leftarrow}$ $\stackrel{U}{\leftarrow}$ $\stackrel{N}{\leftarrow}$ $\stackrel{6}{\leftarrow}$ $\stackrel{U}{\leftarrow}$ $\stackrel{H}{\leftarrow}$ $\stackrel{(1)}{\rightarrow}$ $\stackrel{R}{\rightarrow}$ $\stackrel{3}{\leftarrow}$ $\stackrel{3}{\leftarrow}$ $\stackrel{1}{\leftarrow}$ $\stackrel{1}{\leftarrow$

Entry	Selenoamide 1	Aldehyde 2	Product 3	Yield/% ^{b)}	Mp θm/°C
	Se ArCNH ₂	RCHO	Se—R Ar—(ON—R		
1	Ar = Ph	R = CH ₃	3 a	82	oil
2	Ar = Ph	$R = n - C_7 H_{15}$	3 b	69	oil
3	Ar = Ph	$R = t- C_4 H_9$	3 c	86	98.0 ~ 98.5
4	Ar = Ph	R = -	3 d	97	78.0 ~ 79.0
5	$Ar = m - CIC_6H_4$	R = -	3 e	83	70.0 ~ 71.0
6	$Ar = p-CH_3OC_6H_4$	R = -	3 f	97	80.5 ~ 81.0

Table 1. Synthesis of 6H-1,3,5-Oxaselenazines 3^{a}

into 30 mL of saturated aqueous NaHCO3 and extracted with diethyl ether (3 x 20 mL). The combined organic layers were dried over MgSO4, and concentrated in vacuo. The residual oil was purified by flash chromatography on silica gel (eluted with hexane/ $Et_2O = 100/1$) to afford 2,6-dimethyl-6H-1,3,5oxaselenazine (3a) in 82% yield.

Results are summarized in Table 1. The method is successful with aliphatic aldehydes, and provided oxaselenazines 3 in good yields. In contrast, the reaction of aromatic aldehydes with selenoamides resulted in the formation of a complex mixture with deposition of elemental selenium. As for the Lewis acids, TiCl₄ and AlCl₃ were less effective than BF₃•OEt₂. FeCl₃ and ZnCl₂ exerted no effect on this reaction.

Spectral data of oxaselenazines 3 are listed in Table 2. In ¹³C NMR, the underlined signals can be assigned to the α -carbon of selenium (C2) on the basis of satellite caused by ⁷⁷Se. By a similar reason, H^a can also be distinguished clearly from H^b in ¹H NMR. In ⁷⁷Se NMR, the signals of 3 appeared at $\delta 340 \pm 40.7$

Isolated oxaselenazines 3 are all single stereoisomers with cis-configuration, 8) which was confirmed by the observed NOE enhancements of the integral of H^a by 7-10% and no increment

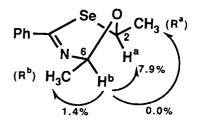


Fig. 1.

a) Reaction time: 20 h except for entries 1 and 2 (1 h). b) Isolated yield of cis-isomer.

Table	2.	Spectral	Data	of	Oxaselenazines	3 ^{a)}	
-------	----	----------	------	----	----------------	-----------------	--

	IR v/cm ⁻¹ (vC=N)	MS m/e (CI, M ⁺ +1)	¹ H NMR ^{b)} δ/ppm	(<u>H</u> ^a) (H ^b)	¹³ C NMR ^{c)} δ/ppm (Cn, ¹ Jsec)	⁷⁷ Se NMR ^{d)} δ/ppm (² Jseн, ³ Jseн/Hz)
3 a	1611 (neat)	255 (M ⁺) ^{e)}	<u>5.65</u> (q, J= 5.17 (q, J=	•	73.3 (C ₂ , 56.8 Hz) 157.8 (C ₄), 89.5 (C ₆)	
3 b	1620 (neat)	424			78.5 (C ₂ , 56.8 Hz) 157.6 (C ₄), 92.7 (C ₆)	
3 c	1622 (KBr)	240	<u>5.42</u> (s) 4.62 (s)		84.2 (C ₂ , 61.0 Hz) 156.6 (C ₄), 96.1 (C ₆)	315 (12.6)
3 d	1618 (KBr)	392	<u>5,41</u> (d, J= 4.74 (d, J=	•	89.0 (C ₂ , 58.6 Hz) 157.9 (C ₄), 99.0 (C ₆)	343 (12.6, 6.1)
3 e	1615 (KBr)	426	5.41 (d, J= 4.72 (d, J=	•	84.6 (C ₂ , 59.0 Hz) 157.7 (C ₄), 96.0 (C ₆)	348 (12.0, 6.5)
3 f	1609 (KBr)	_f)	5.39 (d, J= 4.72 (d, J=	•	84.2 (C ₂ , 59.6 Hz) 161.6 (C ₄), 96.0 (C ₆)	336 (12.4, 6.0)

a) All products gave satisfactory analytical data (C \pm 0.35, H \pm 0.21, N \pm 0.18%). b) $^{1}\text{H-}^{77}\text{Se}$ couplings were observed for H a . c) $^{13}\text{C-}^{77}\text{Se}$ couplings were observed for C2. d) External Me $_{2}\text{Se}$ (neat) was used as the standard (δ = 0). e) The value for M $^{+}$ was obtained by EI. f) The value (M $^{+}$ +1-RCO = 310) was obtained.

of the integrated intensity on the protons of R^a, upon irradiation of H^b (see, Fig. 1).⁹⁾

A possible reaction path may involve the initial formation of 4 (X = Lewis acid) and/or 5 (X = Lewis acid) by the reaction of selenoamides with one equivalent of aldehydes in the presence of BF₃•Et₂O. The reaction of a selenoamide 1 (Ar = Ph) with an aldehyde 2 (R = cyclohexyl) was carried out in a shorter time (10 min) at 0 °C, and quenched immediately with water. After a usual workup, 4 (Ar = Ph, R = cyclohexyl, X = H)¹⁰ was obtained together with an oxaselenazine 3d, but 5 (Ar = Ph, R = cyclohexyl, R = H) was not detected. This observation suggests the intermediacy of 4 (R = Lewis acid).

In summary, a new selenium-nitrogen heterocycle 3 was easily synthesized by using selenoamide as the key starting material.

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (No. 01607004) from the Ministry of Education, Science and Culture, Japan.

References

- 1) A review for selenium-nitrogen heterocycles, see: E. Bulka, Chem. Scr., 8A, 39 (1975).
- 2) Recently, some selenium-nitrogen heterocycles were reported to exhibit high antitumor activity, see: P. C. Srivastava and R. K. Robins, *J. Med. Chem.*, **26**, 445 (1983).
- 3) a) W. Becker and J. Meyer, Chem. Ber., 37, 2550 (1904); b) K. A. Jensen and U. Henriksen, Acta Chem. Scand., 21, 1991 (1967); c) M. P. Cava and L. E. Saris, J. Chem. Soc., Chem. Commun., 1975, 617; d) J. Liebscher and H. Hartmann, Synthesis, 1976, 521; Tetrahedron, 33, 731 (1977); e) V. I. Cohen, J. Heterocycl. Chem., 15, 1113 (1978); 16, 365 (1979); Synthesis, 1978, 768; 1979, 66; f) A. Shafiee, J. Heterocycl. Chem., 15, 473 (1978); A. Shafiee and S. Sattari, ibid., 19, 227 (1982); g) W. J. Hennen, B. C. Hinshaw, T. A. Riley, S. G. Wood, and R. K. Robins, J. Org. Chem., 50, 1741 (1985); h) C. Bochu, A. Couture, and P. Grandclaudon, ibid., 53, 4852 (1988).
- 4) Some of the known methods for the synthesis of selenoamides, require the handling of highly toxic and airsensitive hydrogen selenide, see: K. Kindler, *Liebigs Ann. Chem.*, **431**, 187 (1923) and Ref. 2. High temperature and long reaction time are essential for the preparation from amides and P₂Se₅, see: C. Collard-Charon and M. Renson, *Bull. Soc. Chim. Belg.*, **72**, 304 (1963); I. D. Rae and M. J. Wade, *Int. J. Sulfur Chem.*, **8**, 519 (1976). The methods usable for the synthesis of selenoamides, are as follows: For N-unsubstituted selenoamides, see: V. I. Cohen, *Synthesis*, **1978**, 668. For N-substituted selenoamides, see: F. Malek-Yazdi and M. Yalpani, *ibid.*, **1977**, 328 and Ref. 3c.
- 5) A. Ogawa, J. Miyake, Y. Karasaki, S. Murai, and N. Sonoda, J. Org. Chem., **50**, 384 (1985); A. Ogawa, J. Miyake, N. Kambe, S. Murai, and N. Sonoda, Bull. Chem. Soc. Jpn., **58**, 1448 (1985).
- 6) For the sulfur analogue, see: C. Giordano and A. Belli, Synthesis, 1975, 789.
- 7) The ⁷⁷Se NMR spectra of **3** were taken on a Brucker AM 600 spectrometer (sweep width = 2000 Hz, 65 K data points, pulse width = 45°, acquisition time = 1.024s).
- 8) In all cases examined, signals assigned to the *trans*-isomer (<7%) were detected in a crude mixture by ¹H NMR. Isomerization of the *trans*-oxaselenazine into the more stable *cis*-isomer seems to take place during the purification by column chromatography on silica gel.
- 9) A. Terada and Y. Kishida, *Chem. Pharm. Bull.*, **18**, 497 (1970); M. Yoshimoto and Y. Kishida, *ibid.*, **18**, 2518 (1970); T. Kusumi, D. Muanza-Nkongolo, M. Goya, M. Ishitsuka, T. Iwashita, and H. Kakisawa, *J. Org. Chem.*, **51**, 384 (1986).
- 10) Spectral data of **4** are as follows: IR (KBr) 3200-3400 cm⁻¹; 1 H NMR (CDCl₃) δ 5.12 (d, O<u>H</u>, JCHOH = 3.4 Hz, exchangeable), 5.49 (ddd, NHC<u>H</u>(OH)CH, JNHCH = 6.1, JCHOH = 3.4, JCHCH = 6.1 Hz); 13 C NMR (CDCl₃) δ 84.4 (NH<u>C</u>H), 206.1 (<u>C</u>=Se), MS (CI, m/e) 298 (M⁺+1).

(Received March 16, 1990)